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THE OSCILLATIONS OF AN OSCILLATOR NEAR THE INTERFACE BETWEEN TWO LIQUIDSs 

L.D. AKULENKO, S.A. MIKHAILOV and S.V. NESTEROV 

The normal modes of a oscillator (an elastically attached solid) near 
the interface between two stable stratified liquids are studied. The 
liquids are assumed to be ideal and incompressible. The motion of the 
body causes internal waves to radiate along the interface. 
Numerical-analytical methods are developed to investigate small 
oscillations of the oscillator and the liquid, in a selfconsistent 
hydrodynamical model. Qualitative observations are made concerning the 
damping of the oscillations due to the dispersive properties of the 
medium, as well as the excitation and propagation of the internal waves. 
A study is made of the amplitude-frequency characteristic (AFC) of the 
oscillator incorporating the reaction of the waves; the AFC determines 
such global properties of the oscillating system as the selectivity, 
frequency variation, etc. 

1. InitiaZ assumptions and statement of the prob2em. An investigation will be made of 
small vertical oscillations of the mechanical system represented in Fig.1. It is assumed that 
a convex solid C with a fairly smooth surface C is situated beneath the interface between two 
ideal incompressible liquids. To fix our ideas, we shall assume that the body is a circular 
cylinder, whose generatrix remains parallel to the horizon throughout the motion. Let a be 
the radius of the cylinder and b the length of the generatrix, baa, h the depth of immer- 
sion, h>a, p1 the density of the upper liquid layer, Pl 2 0, If the thickness of the 
layer, O<H<ca, and I% the density of the infinitely deep lower liquid, Pa > Pr. The 
liquids are situated in a uniform gravitational field of acceleration g. 

Fig.1 

It is assumed that forward motion of the axis 0 of the cylinder C takes place in a 
vertical plane perpendicular to the plane of the diagram (xy), under the effect of gravity, 
the reaction forces exerted by the liquid and a linear restoring force. As a mechanical 
example of the force restoring the system to some stable equilibrium position we consider a 
linear elastic member (spring) with compliance h (Fig.1). Note that since b>a we may 
assume that the motions of the liquid are approximately planar. 

The mechanical problem may be formulated as follows. At the start of the motion t =.o 
the body (its centre 0 or centre of mass C) is displaced vertically from its equilibrium 
positi*on 0' through a small distance @,I.@ I<a. It is then released at zero initial 
velocity, and at t>O begins to oscillate. At the starting time the liquids are also at 
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rest, with the interface a horizontal surface, i.e., Y = rl (x,0)=0, where Y = q (z, t) is 
the elevation of the interface. The potential energy of the body is used up in generating 
waves spreading out from the body, and the oscillations are damped. The problem is to deter- 
mine the subsequent motion of the oscillator s(t) with allowance for the waves in the 
surrounding inhomogeneous liquid and the form of the interface q&t). The motion of the 
system is analysed using the linear theory of waves motions in a liquid /l/. 

There is a voluminous literature on the oscillatory motions of a body floating on the 
free.surface of a homogeneous liquid (/l-5/ et al.). An example is the study in /3/ of the 
damping of the oscillations of a "Froude buoy". We must mention that, as a rule, authors 
confine themselves to analysing the asymptotic behaviour of the oscillations when the time 
increases without limit. The papers cited essentially duplicate the work of Sretenskii /l/. 
It has been pointed out /4/ that "the motion of the /floating/ body can be found accurately, 
although little can be said about the wave motion in the fluid". A detailed study has been 
made /5, 6/ of the oscillations of a thin solid on the interface between a two-layered liquid. 

In the present paper we present a complete solution of the problem of an elastically 
attached cylinder oscillating beneath the interface between two liquids and investigate the 
wave motions of the liquids. The dynamics of the system depend essentially on three additional 
parameters: the depth of the upper liquid layer, the quotient of the densities of the liquids 
and the frequency of the normal modes of the unimmersed oscillator (not reacting with the 
liquid). This situation greatly enriches the dynamics of the oscillating system compared 
with the case of a body floating on a free surface or interface between liquids /l-6/. The 
transient oscillations of an oscillator interacting with an inhomogeneous liquid have not been 
considered before. 

We shall assume henceforth that the displacements s(t) of the body are small, and that 
the distance of the equilibrium position 0' (and the body C) from the interface is sufficiently 
large. The disturbances of the liquids will therefore be small, enabling us to use the 
linearized equations of hydrodynamics and approximate conditions of flow around a cylinder. 

Let RD =Ra (5, Y, t) denote the potentials of the velocities for the upper and lower liquids, 

respectively, in the regions not occupied by the body. Since the liquids are incompressible, 
they satisfy the Laplace equation in these regions Vt E LO, T], T< 00: 

A@,,=% IsI<~;eO<Y<~ (1.1) 

A@,='& Izl<w~ Y<% (~2 Y)EC 

At the solid surfaces the liquids must satisfy boundary conditions of impermeability, Vl: 

a@,;/aY JVZH = 0,. amJan Iz = - my (C = s’) (1.2) 

Here C is a circle, c = c(t) is the vertical velocity of the centre of inertia of the 
cylinder, fand ny is the projection on the y-axis of the normal vector n to the cylinder 
surface C. Within a finite time, the disturbances in the liquid and along the interface will 
travel a finite distance; hence the following conditions hold at infinity Vt&O, 2'1: 

@'a Iv--m + 0, Q,,, lI+m --z 0 (2.3) 

Besides conditions (1.2), (1.31, boundary conditions are also imposed on the liquid 
interface y = q (5, t), expressing the fact that the pressures and normal velocities are equal. 
In the linear approximation, these conditions are 

In order to eliminate the unknown function 11, we differentiate the first equality of 
(1.4) with respect to t and use the second, to eliminate *lat. This gives a system of 
conditions involving only the functions @,,,: 

[paaqhw - p,aqidt* + g (pz - pl) a@,, z/ayi,=, = 0 
m,iaY I~=~ = m,iaY iv=0 (= % a m + way Id 

(1.5) 

Together with the above boundary conditions (1.2)-(1.51, we need initial conditions for 
the unknown functions @,,,,q. In view of our assumptions as listed above, these conditions 
are trivial: 

CD,,, (5, Y, 0) = 0, rl (I, 0) = 0 (1.6) 
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The approach outlined below for solving this problem includes the following steps: a) 
solution of the external problem of hydrodynamics on the assumption that the motion of the 
body is known, as formulated in Sect.1 (Sect.2) ; b) derivation of the selfconsistent equation 
of motion and formulation of a closed Cauchy problem for the body (Sect.3); C) study of the 

frequency characteristics of the oscillations, in order to determine the global properties of 
the motion (Sect.4); d) numerical-analytical solution s(t) of the integrodifferential Cauchy 
problem (IDCP) for the body and construction of the interface. 

2. Sol&ion of the hydrodynamic probZem given the motion of the cy2inder. The major dif- 
ficulty in solving the external hydrodynamic problem is due to the need to observe the boundary 
conditions on the different components of the boundary, which is disconnected: on the surface 
C of the cylinder and the upper solid wall at Y=H (1.2), and also on the interface between 
the liquids (1.41 or (1.5) (see Fig.1). The conditions on the surface C of the cylinder can 
be satisfied by using a modification of Havelock's method /l/ 

We confine ourselves to the dipole approximation: the mot'ion of the liquid near c will 
be described in terms of a dipole potential placed at the Point (0, -h). The required velocity 

potentials @r,% may be written in the farm /l/ 

@J, = 'pr (2, Yt t), lx I< 001 H > Y>O (2.l) 

ot$ = a%(t) 2 (5: Y) -I- rp, (5, Y, t), I * I < co, Y < 0, (2, Y) E c 

.z (5, Y) = (Y + h) If + (Y + h)V - (Y - h) I.%+ + (Y - @"I-' 

where %,, are the velocity potentials of the wave motion. Using the expression for @, in 
(2-l), one can ensure the validity of the flow condition on (1.2) accurately to within (&)a 

(with error (a/h)*), which is the first approximation in Havelock's method. 
Substituting expressions (2.1) for cItr.2 into Eqs.(l.l) and the boundary conditions 

(1.2)-(1.5), we obtain a boundary-value problem for the Unknowns ml,%: 

Aip,=O, Ixl<ce, H>y>O (2.2) 

Here and below, dots denote differentiation with respect to time, and primes together 
with subscripts denote differentiation with respect to X,y. The initial conditions for the 
wave motion potentials cpl,z are 

%,z (G Y1 0) = 0, IPrcpI'- p2'p2' - 2p,u2h (~9 -t h2)-‘c’&,, tsO = 0 (2.3) 

Using Fourier transforms, we can express the potentials 'pi,% in the form (k: 2 0 
denotes the wave number) 

‘PI (I, y, t) = j: A, (k, t) CA “,&- id cos kx dk 
0 

(~2(x,y,d)= SA,(k,t) ex@eoskxdk; A,(k,t)= - A,(k,t)cthkH 
@ 

(2.4) 

The relationship between the unkowns Arand A, follows from the third boundary condition 
(2.2). Using it, we convert the first condition (2.2) into a closed differential equation 
(with respect to t) for AB(kS t); 

A,” + ~9 (k) A, = -2& (k) e-th c"(t) 

x (k) = pa th kH (pl + pz th kH)-l, k > 0 

(2.5) 

e-xh cos kx dk = ha + za , h>O) 
0 

This equation involves an important characteristic of the oscillatory process: o = o(k) 

is the frequency of the internal wave with wave number k: 

wz = ~9 (k) = (pe - pl) gk th kH (pl. + pa th km-’ “= 

(Pa --p&pa-'&x(k), k>O 

(2.6) 
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It follows from this expression that the phase velocity o (k)lk is not the same as the 
group velocity do (k)ldk,k> 0. From the physical viewpoint, the internal waves possess dis- 
persion; only in the limit as kH_t 0 does the dispersion vanish. 

The solution of Eq.fZ.5) satisfying the initial conditions (2.3), obtained by twice 
integrating by parts, can be written as 

A,(k,t)=-22oP~(k)e-1h[~(I)-~(k)11~(7)sinw(k)(t-r)dr], 

A, = - A, cth kH” 

(2.7~ 

For the sequel, we need mainly the potential a,; the function CCb, is determined by (2.4) 
and (2.7). On the basis of (2.1), (2.4), and (2.7) we can find an explicit expression for 

% involving rather complicated quadratures: 

tEt, (x% y,, t) = a%(t) z (5, yf - 2aa [c (t) f x(k) c+(@) cos kx dk - 
0 

It follows from (2.8) that the conditions at infinity (1.3) are satisfied. If the motion 
of the cylinder s* (r) = c(t) (c (0) = 0) is given, we can use (1.4) and our expressions for the 
potentials to represent the form of the interface y = q(x, t) (here we need the function 

@1) in the form 

9 (xv $1 = (Ps - PI)-’ 9’ [pa@, (x, 0, t) - (2.9) 

The resulting explicit expression (obtained after substitution of the functions @I* r (59 
9, t) turns out to be extremely cumbersome. However, in the limit as H-t 00 (H>h), which 
is often the case in practice, the elevation of the interface, expressed in dimensionless 
variables, can be brought to a form amenable to analysis (see Sect.3). 

3. Derivation of equations of oscii%tions of the cylinder a~&wing for reaction of 
radiated waves. In order to determine the displacement s(t) of the centre of mass C of the 
cylinder (or the point O), we must construct a closed equation of motion incorporating the 
reaction of the liquid. We first calculate the external forces acting on the body. The 
reaction force F acting on the cylinder is found by integrating the projections of the 
pressure forces around the contour C: 

F= -b$pndl, n=(n,,n,)T (3.f) 
r 

where p = p (I, y, 1) is the pressure in the liquid and n the outward normal. Using the 
Bernoulli integral, we obtain 

P = P (% Y? t) = Pa I%’ (+ Y, t) - ml (3.2) 

Evaluating the right-hand side of (3.2) with the help of (2.8), substituting the result into 
(3.1) and integrating, we obtain F = (F“,, FJT: 

2naabp, [ c (T) 5 x (k) wa (k) edekh cos o (k) (t - Z) dk dz 
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The displacement S(t) of the centre of intertia C of the cylinder is conveniently 
reckoned from the equilibrium position. Using the vertical component of the pressure force 
as expressed by (3.31, we obtain a closed integrodifferential equation (IDE) for the vertical 
oscillations of the body on the elastic member near the interface of the two liquids: 

a" + ~~22s = - 2aa $j s' (.t) s h-x (k) 02 (k) e-akh cos o(k) (t - .c) dk d-c 

0 II 
(3.4) 

s&z&, M,= nasbpz, 

,+f=Mc+M,[l +-$-2a’~kx(k)e-zkhdk] 

0 

Here M is the effective mass of the cylinder (including the added mass of the liquid) MC 
is its true mass and 52 is the frequency of oscillations of the cylinder when there fs no 
wave radiation (if pr = pI or o (k) E 0). The IDE (3.4) must be solved with initial con- 
ditions 

s (0) = so, s’ (0) = c (0) = 0 

We have thus obtained as IDCP (3.4), (3.5), whose solution s(t) over the relevant time 
interval 0 Q t Q T < 00 enables all the unknown characteristics of the motion of the system 
to be found as quadratures (see Sects.2, 3). We now introduce dimensionless 
variables: 

H, = H/h, 6 = p1/p2, E = kh, t, = Bt 

r*=&(1-6)>0, &=2 -g+yz (E((y2 
( ) - 1) 

In view of the linearity and homogeneity of the equation, the unknown s 
dimensionalized relative to any convenient quantity, say h (or so, in which 
As a result we obtain the following IDCP: 

s” + s = - E $K (6, H,, y (t* - T)) s’ (r) o!z 

s (0) =“so, (= I), s’ (0) = 0 

K (6 H,,. yt,) = 1 -&$j~ ~0s (+)‘i’ V, d% 
0 

parameters and 

(3.6) 

can be non- 
case o(0) = 1). 

(3.7, 

t: = th %H,, 0 < E < I, 6 > 0, H, > 0, y > 0, 0 Q t, < T, (E) 

For applications, it is of interest to investigate the solutions of problem (3.7) over 
the asymptotically large interval of the argument t, E IO, T,(E)~, where T,(E) -P 00 as E ‘--f 0, 
in which the behaviour of the system changes in a qualitatively significant way. A complete 
investigation of the motion as described by the IDCP (3.7) is difficult, as it involves a 
large number of parameters: a, y, 6, H,. We therefore consider the limiting case H, - m 
(an infinitely deep upper layer); computations show that the solutions at H, = m and H,el 
(i.e., H H h) are practically identical. Problem (3.7) involves the parameters E, y and 
can be reduced to the following form (for convenience we simply put t, = t) : 

t 
s”+s=-~SK(y(t--))s’(7)d~, s(o)=so(=i), sS(O)=O (3.8) 

0 

K (yt) = 1 Eae-ac cos 1/c yt dE, yz = & , l-6 
- g*=g 1+* 

c! 

~=(;)“$Y’<~, y-1; o,<t,<T(~), T(e)I,,-+m 

Attention is now given to constructing a solution s = s (t, y, 8) of the IDCP (3.8). As 
seen in Sect.2, once this solution has been found one can determine the velocity potentials 
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@l,z(z, y, t) in both liquids, the velocity fields V1,2 = -v@,,, and pressures pl,* (Sects. 

2,3), as well as the interface y = n(z,t) (Sect.2). In particular, 

‘1* (x+, t) = ; s’ (7) j Ee-‘cos 5x* cos I/gy (t - .c) dE dz 
0 ll 

x*=+, q*(x*,t)=-+ p=2($)1+el 

(W 

A formal solution of the IDE (3.81, which has a convolution-type kernel, can be found by 
operator methods /7/, as done, e.g., in /l, 21. However, it is generally impossible to analyse 
such solutions, because of the complicated analytical structure of the kernel K(yt) and its 
transforms. To construct the required solution and interface of the liquids over an 
asymptotically large time interval, numerical methods are available. Below (Sect.5) we shall 
present the results of computations and an analysis of the motion of the system for various 
values of the parameters e,y. In connection with the global characteristics of linear 
oscillations of system (3.8) it is also important, from both theoretical and applied 
standpoints, to investigate the steady-state forced oscillations induced by a harmonic 
external force on the body. 

4. Forced oscitihtions of the oscitktor near the liquid interface. The motion of the 
body under an impressed harmonic force, in non-dimensional variables, is described by the 
following IDCP: 

t 
s”+s= -esK((y(t-~))S’(7)dr+f,cosat (4.1) 

0 

5 (0) = S'(0) = 0, a e II, m) (f0 = 1) 

By using Laplace transforms /7/, we obtain expressions for the transforms of the solution 
and the kernel: 

S* @, a, y, E) = p/R*, R* = @" + a')[1 + pa + @* (~7 v)] (4.2) 

p = u + iv, ~>,%l>O, lvl<w 

Inverting the transform s*(p) (4.2) produces a standard expression for S(t)- the 
solution of problem (4.1): 

s = s (t, a,. Y, E) = -&- (4.31 

Periodic steady-state motion is represented here by the contributions to the integral 
(4.3) from the imaginary poles p = *ia. However, evaluation of the residues at these poles 
yields a divergent integral in the expression for K*(fia, y) 
the sense of the principal value). 

(which is convergent only in 
To avoid this complication, 

the substitution p = (T + iv, -00 <v < j-00 (u = const) 
we transform (4.3) by making 

and evaluate the residues at 
The required amplitude-frequency characteristic (AFC) is 

A = A (a, y, e) = l/R (a', ya, 8) 

p = *ia. 

(4.4) 

R(aa,t(yase)l=[ 1 -aa-+$(l + 2+)---E$-Q(aa,,yP)1 = 
{[ 1 - aa - et (x)1” -I- sag (XV’* = X @S x, 8) 
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Analysis of the function R(aa,yZ,&) reveals that at fixed but fairly small E>O, it 
has a minimum as a function of a2 and a maximum as a function of Y" (a saddle point); accord- 

ingly, the function X has a minimum with respect to aa and a maximum with respect to X. 
The amplitude at this point has a maximum as a function of aa, which tends to infinity like 
l/E as e-+0, and a minimum with respect to ya (or x). Equating the derivatives of X2 
with respect to a2 and x to zero, we obtain equations for the minimax point (a,, yO): 

8X2/8a2 = -2 [1 - ~2% - cf (x)] = 0, a* = 1 - ef (x) 
ax’/% = -2Ef( (X) [I - a'- 8f (x)1 + Ea.& (x) = 0, g’ (x) = 0 

(4.5) 

Differentiation of g(x) enables one to determine the required value x0 = 31,. Sub- 
stitution of this value into expression (4.5) for aa yields the required values of both 
variables a0 (E), Ya (e) and the minimax value A, (8): 

aoz = aoa (e) = 1 - Ef (s/,), f (S/2) N -0.186 

yes = yo2 (E) = ‘1, [l - Ef (3/2)1 

A, = A, (E) = A (a, (E), TO (E), 8) = 

6-l g-‘/* (“i,) = E-‘4e3/(27n) N o.%iE-’ 

(4.6) 

For fixed values of the parameters E, y, the value of a* corresponding to the maximum 
of A is found by solving the equation dXaldaa = 0 (say, by Picard's method), i.e., 

a;*;: - Ef (X) + Ey-f’ (x) [I - a* - Ef (x)1 - E'Y-'g (X) 
- a*’ (y, E) = 1 + 0 (E) = 1 - 8f (p) + 0 (I?) = 

1 - Ef (y-“) + E’y-‘f’ (y-‘) f (,‘-“) - ‘/&+g’ (y-‘) + 0 (Es) Z 

max A (a, Y, E) = A (a* (y, E), y, E) = A, (E) f 0 (E), y - 1 
a 

(4.7) 

It follows from (4.6) that the resonance frequency a,(&) is greater than unity, i.e., 
than the "natural frequency", by an amount O(e): a, N 1 f 0.093s; this property remains valid 
for y- 1 close to Y0 = yO(e). It follows from (4.6) that for fixed, sufficiently small 
s > 0, the AFC shows the standard shape of a unimodal curve (with a single maximum as a func- 
tion of a). The maximum of A = A (a, y, E) is reached at a* N 1 - '/%Ef (y-*) and it is 
equal to A* = A* (J,(;;); f; (8) + 0 (E) (see (4.7)), i.e., it is independent, to within a 
relative error Y, Y--l. If there is a significant change in the value of Y, 
then in the limiting cases EY-~-+O and Y--oa the resonance frequencies are a*CS1- 
&zy-Zg’ (y-2) and a*?1!1+~/(8$), respectively, and in the limit a* = 1 (y = 0, q-6 = 0 

y = co). It should be noted that in the limiting cases system (4.1) is actually a diffeien- 
tial equation without an integral term (i.e., without damping), of the form S" + S = cosat, 
for which A(a,y,~)-,oo as a-l. The normal modes of the initial, conservative system (3.8) 
will be undamped and harmonic: s (t) = const, t > 0. Calculation of the oscillations of the 
cylinder according to the IDCP (3.8), the wave motions of the liquid at the interface accord- 
ing to formula (3.9) and the ARC (4.4) for arbitrary values of E(O<s<l),Y(O<Y<~) 
presupposes the development of numerical algorithms. 

5. Results of computations and qualitative conchsions. Computations using formula 
(4.4) (Fig.2) have established that for fixed, sufficiently small e>O (e=O.1) the resonance 
frequency a* (Y,e) increases as y increases (y>O.i), goes through the value a*(y,s)= 1, reaches 
a maximum and then decreases, approaching unity - the natural frequency. Thus, for all y--l 
the variations in the resonance frequency are of the order of e,e<i.. The maximum amplitudes 
A* = A (a' (Y,e), Y, 8) agree with formulae (4.6), (4.7) and the analysis in Sect.4. One observes 
a very high selective capacity of the oscillating system in relation to the frequency cc for 
sufficiently small E>O and a marked dependence on the parameter y near Y Y y0 (8). At 

Y = Vo W the amplitude is a minimum as a function of y and a maximum as a function of cc, 
indicating maximum damping of the oscillations, i.e., maximum interaction of oscillator and 
liquid. 

An increase in e leads to a drop in the maximum amplitude according to (4.6), (4.71, 
i.e., to increased generation of internal waves and damping of oscillations in the oscillator 
(Fig.2). At E> 0.35 one observes a point of deflection to the left of the maximum, which 
is deformed when E increases further so that the AFC has two local maxima and a minimum in 
the neighbourhood of a= 1. This behaviour of the AFC is typical of two-frequency linear 
oscillating systems with significant damping. 

Analysis of the AFC makes it possible to determine the global properties of the oscil- 
lating system described by the IDCP (3.8). A program has been worked out to solve this problem, 
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involving a laborious procedure for constructing the kernel K(8) of the integral operator 
with high accuracy over a long interval of time t(e=yt). The displacements 6 (G y, a) were 
computed over a time interval in the course of which there was a significant drop in the 
amplitude of the oscillations and considerable generation of internal waves. After con- 
structing the solution of system (3.8) by formula (3.9), the space-time picture of the 
variations in the interface nr(zt.t,y) was computed. To make the results more readily visual- 
izable, the value of e was taken to be fairly large (e=0.5), while those of y were taken - 
both near the maximum point ~~(e)(y~_= 1/Z/3) and far from it (y = 0.5). 

/ L 

Fig.2 

Fig.3 

Fig.4 
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Fig.3 presents the results of computations of ~(8) and s(t,y,e) at r=v (the solid 
curves) and y= 0.5 (the dashed curves); the cosinusoid t,, ==~(t,y,O)= cost (the dash-dot curve) 
describes the oscillations of the oscillator at e=O. From the shape of the curves for 
different y one can conclude that the oscillations may differ significantly in nature. At 
y-p the oscillations of the cylinder are damped far more rapidly than at y=O.5, in agree- 
ment with our analysis of the AFC. 

Furthermore, comparison of the space-time pictures of the interface at E= 0.5 and y = 0.5 

(Fig-B), y= yQ (Fig.5) shows that the case y=O.5 corresponds to weak interaction between 
the oscillator and liquid. The excitation of internal waves at points of the surface with 
large zt values is negligible and the damping of the oscillations is slow. At v = r" (YE Yo) 
the oscillator-medium interaction is considerably stronger: the oscillations are damped 
rapidly. Internal waves are generated and propagate over the interface. 

Fig.5 
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